Direct Ground Cooling – Possibilities and Applications in Sweden

Saqib Javed, PhD, PE

Building Services, Chalmers University, Gothenburg, Sweden Building Services, Lund University, Lund, Sweden

> saqib.javed@chalmers.se saqib.javed@hvac.lth.se

Traditional Ground-Source Heating and Cooling Systems

Fig: www.epa.gov

Traditional Ground-Source Heating and Cooling Systems

- Dimensioned after heating demand.
- Use mechanical heating and cooling (heat pump / chiller).
- In heating mode:
 - ✓ Supply temperature of ~40–60 °C; Δ T of 5–20 K.
- In cooling mode:
 - ✓ Supply temperature of ~5–7 °C; Δ T of 5–8 K.
- Seasonal Performance Factor between 2–5.

Ground-Source Systems with Free Cooling

Fig: <u>www.uponor.se</u>

Ground-Source Systems with Free Cooling

- Dimensioned after heating demand.
- Use mechanical heating, and a combination of mechanical and free cooling.
- In heating mode:
 - ✓ Supply temperature of ~40–60 °C; Δ T of 5–20 K.
- In cooling / free-cooling mode:
 - ✓ Supply temperature of ~5–15 °C; Δ T of 3–8 K.
- Improves Seasonal Performance Factor.

Example of Ground-Source System with Free Cooling

- Astronomy-House, Lund University
 - ✓ Floor area: 5300 m²,
 - ✓ 20 boreholes,
 - ✓ Rectangular configuration,
 - ✓ Each 200 m deep.

Astronomy-House, Lund

Fig: Per Fahlén

Astronomy-House, Lund

Field Measurements	MWh/year	kWh/m²/year
Heating Demand	515	97
Cooling Demand	155	29
Heating form Heat Pump	475	89
Supplementry Heating (District Heating)	40	8
Free Ground Cooling	130	25
Heat Pump, simultaneous heating and cooling	15	3
Heat Pump, cooling only	10	2
Electricity for Heat Pump	104	20
Electricity for Circulation Pumps	7	1

Astronomy-House, Lund

Heat Pump System Only ullet

> $Heating_{HP} + Cooling_{HP}$

> > $SCOP_{Heat Pump} \cong 4.6$

Heat Pump System with Free-Cooling ullet

 $Seasonal \ Performance \ Factor_{System} = \frac{Heating_{HP} + Cooling_{HP+Free}}{Electricity_{HP+Pumps}}$

$$SPF_{System} \cong 6$$

Direct Ground Cooling and Heating

Cooling

Pre-heating

Direct Ground Systems

- Dimensioned after cooling demand.
- Uses passive cooling and heating (i.e. without any heat pump and / or chiller).
- In cooling mode:
 - ✓ Supply temperature of ~15–20 °C; Δ T of 5–7 K.
- Have a Seasonal Performance Factor of 10–50.
- Requires integrated design approach.

Potential of Direct Ground Cooling in Sweden

Ground temperatures at 100 m and Summer Design Temperatures.

Fig: Olof Andersson

Continuous Cooling Test.

• Intermittent Cooling Test.

• Realistic Test.

Source: Adeeb

Source: Adeeb

Direct Ground Cooling of Telephone and Television Exchanges

- Several installations all over Sweden.
- Typical capacities between 30–400 kW.
- Designed for 20 °C from boreholes.
- Recharging in winter.

Direct Ground Cooling of Telephone and Television Exchanges

Fig: Andersson et al. (2003)

Fig: Paksoy et al. (2000)

Direct Ground Cooling of Buildings

Polishus, Malmö (2012)

Entré Lindhagen, Stockholm (2013)

Klipporna, Malmö (2014)

Skanska's Deep Green Cooling

- Use ground natural temperature.
- Summer Cooling
 - ✓ Chilled beams,
 - ✓ Supply-water at 16 °C,
 - ✓ Return-water at 22 °C.
- Winter Heating
 - ✓ Ventilation air pre-heating,
 - ✓ Supply-water at 8 °C,
 - ✓ Return-water at 5 °C.
- Patented in Sweden, EU and USA by Skanska.

Malmö Polishus – A Direct Ground Cooling System

Possibilities and Applications in Sweden

Building Information

- Situated in Malmö.
- Completed in Sep 2012.
- Four-story building.
- Area: 3,550 m².
- Office area: 2,500 m².
- Accommodates ~80 police officers.
- LEED Gold certified.
- Green Building Programme certified.

Building System Details

- Prefabricated concrete sandwich wall construction.
- Envelop (W/m²-K): walls 0.18; roof 0.10; windows 1.10.
- Air tightness: 0.45 l/s-m²
- Ventilation: CAV, heat recovery, preheating using ground.
- Cooling: Deep Green Cooling (DGC).
- Heating: District heating.
- Terminal units: Chilled beams for cooling, Radiators for heating.

Ground Cooling and Heating

Ground Cooling and Free-Air Cooling

Ventilation System

Peak Cooling Temperatures

Peak Heating Temperatures

Average Daily Temperatures – 5 Years

Ground Heating and Cooling – 5 Years

System Performance

 $SPF = \frac{Energy_{Cooling} + Energy_{Savings} + Energy_{Free Cooling}}{Energy_{Free Cooling}}$

Energy_{Pumps}+Energy_{Fans}

Parameters	2013	2014	2015	2016
Cooling (kWh)	24,400	25,000	16,700	32,300
Heat Savings (kWh)	32,400	25,600	21,500	21,800
Free Cooling (kWh)	48,000	39,500	42,200	38,500
Electricity Pumps (kWh)	4,600	4,200	4,200	3,900
Electricity Fans (kWh)	2,100	2,300	2,400	2,300

Seasonal Performance Factor

 $SPF_{2013} = 16$ $SPF_{2015} = 12$ $SPF_{2014} = 14$ $SPF_{2016} = 15$

Cooling Energy and Flows

SPF₂₀₁₃₋₂₀₁₆ ≈ 15

(kWh/m²,år)	Beräknad energianvändning	Uppmät energianvändning 2013
Komfortkyla	14	7,5

Peak Cooling Loads

Other Deep Green Cooling Systems

Polishus, Malmö

 $\mathsf{SPF}_{2013\text{-}2016} \thickapprox 15$

Entré Lindhagen, Stockholm

Other DGC Systems

Polishus, Malmö

SPF₂₀₁₃₋₂₀₁₆ ≈ 15

Entré Lindhagen, Stockholm

SPF = 35

Effsys Expand – Research Project

Ongoing Experimentation

• Direct ground cooling with fan coil units.

Possibilities and Applications in Sweden

Other Terminal Units

Wall Panels

Induction Units

Air Handling Units

Roof / floor panels

Fan Coil Units

Geoenergidagen 2017

Page 41

Comments! Questions?

Ground-coupled systems in Gothenburg, Sweden.

Geoenergidagen 2017

Page 42